
Journal of Geophysical Research: Atmospheres

Reduced Arctic air pollution due to decreasing European
and North American emissions

Anna R. Mackie1, Paul I. Palmer1, James M. Barlow1, Douglas P. Finch1,
Paul Novelli2, and Lyatt Jaeglé3

1School of GeoSciences, University of Edinburgh, Edinburgh, UK, 2NOAA ESRL Global Monitoring Division, Boulder,
Colorado, USA, 3Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA

Abstract Atmospheric transport of midlatitude pollutant emissions to the Arctic can result in
disproportionate impacts on the receptor region. We use carbon monoxide (CO), a tracer of incomplete
combustion, to study changes in pollutant transport to the Arctic. Using a wavelet transform, we spectrally
decompose CO mole fraction measurements from three Arctic sites (Alert, Barrow, and Zeppelin) collected
by NOAA over the past 20–25 years. We show that CO concentrations have decreased by −1.0 to
−1.2 ppb/yr. We find that the dampened seasonal cycle (−1.2 to −2.3 ppb/yr) is mostly due to a reduction
in peak concentrations (−1.5 to −2.4 ppb/yr), which we attribute to reduced source emissions. We find no
evidence to support a persistent increase in hydroxyl radical concentration. Using the GEOS-Chem global
3-D chemistry transport model, we show that observed decreases are consistent with reductions in fossil
fuel usage from Europe and North America.

1. Introduction

Observed increases in Arctic surface air temperatures are larger than the global mean average and are pro-
jected to increase rapidly over the current century [Stocker et al., 2013]. These increases are due to increasing
concentrations of long-lived greenhouse gases whose perturbations to Earth’s radiation balance are exac-
erbated by positive feedback mechanisms. However, air pollution mainly comprised of short-lived gases
and particulate matter also significantly affects Arctic climate via changes to, for example, surface albedo
and cloud optical properties, involving physical and chemical processes for which current knowledge is
incomplete [Stocker et al., 2013].

We use atmospheric CO as a proxy for midlatitude combustion pollutant sources and focus on observed vari-
ations. However, we acknowledge that CO and particulate matter will be subjected to different physical and
chemical processes that will ultimately determine their transport efficiency. The importance of tropospheric
CO lies in its role as a sink for the hydroxyl radical (OH), the main tropospheric oxidant for many air pollutants.
Given sufficient nitrogen oxides, CO is a precursor of tropospheric ozone [Derwent et al., 1998], which itself
has an enhanced shortwave radiative forcing effect in the Arctic [Shindell, 2007]. CO has a large direct source
from combustion and a large, diffuse indirect source from the oxidation of methane and nonmethane volatile
organic compounds. Atmospheric loss of CO is due primarily to oxidation by OH, resulting in a lifetime of sev-
eral weeks to a few months depending on the availability of sunlight and water vapor determined by latitude
and season. The resulting seasonal cycle for CO at high-latitude peaks in late winter/early spring due to varia-
tions in atmospheric transport fluxes from midlatitude sources and a minimum during summer months when
the OH concentration is highest.

Atmospheric CO concentrations are measured at surface sites around the world. The limited measurements
available before 1990 suggested that CO mole fractions in the Northern Hemisphere increased by 1–2 ppb/yr
from the 1950s to the 1990s largely due to increases in fossil fuel combustion [Khalil and Rasmussen, 1984,
1988; Levine et al., 1985], with little or no trend in the Southern Hemisphere. With the exception of atmospheric
perturbations due to the 1991 eruption of Mount Pinatubo and the 1997/1998 El Niño, Northern Hemisphere
CO decreased steadily (−0.92± 0.15 ppb/r) from the 1990s to 2001 [Novelli et al., 2003]. Model interpretation of
observed changes of CO at high northern latitudes (30–90∘) during 1988–1997 show that the negative trend
in mean annual CO mole fraction data was due to decreases in European fossil fuel emissions [Duncan and
Logan, 2008]. A study based on measurements made in central Oregon, USA, reported a significant decrease
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in mean springtime values of CO (−3.2 ± 2.9 ppb/yr) [Gratz et al., 2015]. This decrease was similar to those
determined at three NOAA sites over the North Pacific region (Midway, Mauna Loa, and Shemya). Gratz et al.
[2015] tentatively link these changes to anthropogenic emissions from East Asia, Europe, and North America
based on emission inventories. A recent study of CO mole fraction data collected on the Westman Islands, Ice-
land, between 2004 and 2009, found evidence of a decrease in CO mole fraction of 2.4± 1.1 ppb/yr [Park et al.,
2015], which uses coincident 𝛿13C and 𝛿18O measurements they attribute to changes in natural and anthro-
pogenic sources. In this paper we examine specifically CO trends in the Arctic, which represent large-scale
changes in high northern latitudes.

It is nontrivial to attribute observed atmospheric CO variations to specific processes. To address this we use
two methods: (1) a wavelet transform to spectrally decompose the mole fraction data to study how charac-
teristic periodic variations change with time and (2) a global 3-D atmospheric chemistry transport model to
attribute observed variations to specific geographical regions. Previous analyses of the CO mole fraction time
series used a smoothing function that represented the seasonal cycle by four harmonics and the trend as a
polynomial [Novelli et al., 2003; Gratz et al., 2015]. The wavelet transform allows us to identify simultaneously
the dominant modes of variability and how they change with time.

2. Data and Methods
2.1. CO Mole Fraction Data
We use the CO dry air mole fractions measured by flask air samples collected by the National Oceanic and
Atmospheric Administration (NOAA) Cooperative Air Sampling Network. Air samples were collected approx-
imately weekly under conditions believed representative of the large and well-mixed regional atmosphere.
We focus our analysis on three Arctic sites: (1) Barrow, Alaska (BRW, 71∘N, 157∘W) from 1989 to 2012; (2) Alert,
Nunavut, Canada (ALT, 82∘N, 63∘W) from 1992 to 2012; and (3) Zeppelin, Svalbard, Norway (ZEP, 79∘N, 12∘E)
from 1994 to 2012. These sites were chosen for their long available data sets and strong seasonal cycle. By
virtue of their location they should be able to observe any large-scale changes in the Northern Hemisphere
atmosphere. Individual measurement uncertainty estimates for CO, accounting for collection, analysis, and
calibration errors, are 2.8 ppb for the years 1989–2004.5, 1.1 ppb for the years 2004.5–2008.5, and 0.7 ppb
from 2008.5 onward.

We focus our analysis on a weekly time series so that we minimize errors due to imputation while retaining
observed changes on submonthly scales that would otherwise be lost. We prepare the weekly time series in
two steps. First, we discard data that have been flagged by quality criteria [Novelli and Masarie, 2014]. Data col-
lected within a calendar week are averaged and assigned to the midpoint of the week. Second, we impute the
data gaps using two methods. We calculate a local temporal average from the three previous and three sub-
sequent years at the times of any missing data, implicitly assuming that the time series is similar, or smoothly
varying, from year to year with no abrupt trend. This is a reasonable assumption because the measurements
are located such that they sample large-scale changes in CO and not local variations. This imputation is only
used if these three previous and subsequent data points are not themselves missing. This mean was taken
over 6 years as a compromise between retaining short-term variations and long-term trends. Any remaining
data gaps are imputed using a cubic spline. The first imputation accounts for 11, 19, and 13% of the weekly
data points for ALT, BRW, and ZEP, respectively, while the second accounts for 3, 5, and 4%. Figure 1 shows
the original and imputed weekly mole fraction data at BRW. We show below that these imputed data do not
significantly affect our reported results.

We also report annual and seasonal average CO concentrations. For each site we average the imputed weekly
data record over a calendar year and assign that value to the midpoint of that year. We report the slope
of a linear regression to represent a best fit line and the average of the upper and lower 95% confidence
intervals to be the associated uncertainty. We use the conventional seasonal definitions: March–May (MAM),
June–August (JJA), September–November (SON), and December–February (DJF), discarding incomplete sea-
sons at the beginning and end of the time series. We average all weekly points within each season, assign that
to the midpoint of the seasons, and use that information for the seasonal linear regression.

2.2. Wavelet Transform
We use a wavelet transform to spectrally decompose the weekly averaged CO mole fraction data:

Wn(s) =
N−1∑
n′=1

xn𝜓
∗
[
(n′ − n)𝛿t

s

]
, (1)
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Figure 1. (top) The weekly NOAA CO mole fractions collected from Barrow, Alaska (BRW) between 1989 and 2012 and
our imputed weekly data product that fills in data gaps necessary for the wavelet transform. (middle) Observed and
GEOS-Chem model (1989–2012) weekly averaged CO mole fraction data. (bottom) The weekly averaged contributory
global, linear tagged tracers of CO from fossil fuel combustion, biomass burning, and the secondary chemical source.

where 𝜓∗ is the complex conjugate of the normalized form of the wavelet, 𝛿t is the time interval, xn is the
data, n is the time index, and s is the scale. The resulting power spectrum is shown in Figure 2. The region
beneath the cone of influence (COI), faded in the figure, denotes regions where there may be edge effects,
though these uncertainties have been minimized by padding the data. The advantage of this approach is that
it preserves frequency variations as a function of time, allowing for the time evolution of signals, while not
suffering from overrepresentation of high-frequency components like windowed Fourier transform methods
[Lau and Weng, 1995]. Below we use the wavelet transform as a band-pass filter to isolate a subset of periods,
e.g., to deseasonalize the model and data by retaining periods >18 months. We refer the reader to Barlow
et al. [2015] for a more detailed mathematical discussion of this approach including values of the parameters
used. By using equation (1), the weekly time series can be decomposed and reconstructed to within less than
1% of the original time series.

Based on the power spectrum of the spectrally decomposed CO data, we contend that periods of less than
6 months represent high-frequency variations most likely localized in space and time and consequently are
not examined further. We determine the maxima and minima of the time series using the smoothed data
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Figure 2. (a) Atmospheric CO mole fraction (ppb) at Barrow, Alaska, 1989–2012, with periods less than 6 months
removed. (b) The wavelet power spectrum of that data, where the contours scale is power: blue indicates low power
and red high power. Values that sit below the cone of influence (faded) may be affected by edge effects, therefore
have a higher uncertainty. (c) The associated global wavelet power spectrum. (d) Periods longer than 18 months,
which represent long-term variations representative of the atmospheric growth rate of CO.

(with periods of less than 6 months removed). We use periods between 6 and 18 months to describe the
power associated with the detrended seasonal cycle. We define the amplitude of this detrended seasonal
cycle to be the difference in concentration between a maxima and the following minima. Periods longer than
18 months represent long-term variations, representative of the atmospheric growth rate of CO. We calculate
trends in the amplitude of the detrended seasonal cycle and the maxima and minima of the smoothed data
using a linear regression. Using a Monte Carlo approach, we find that our reported trends are largely insen-
sitive to perturbations of the data (represented by the product of  (−1, 1) and the estimated measurement
uncertainty). Using a similar approach but only perturbing the imputed values, we find that even inflating the
estimated measurement uncertainty by a factor of 10 does not significantly affect our reported results.

2.3. GEOS-Chem Global 3-D Chemistry Transport Model
To relate geographical sources of CO to observed atmospheric mole fractions we use v9-01-03 of the
GEOS-Chem global chemistry transport model driven by MERRA analyzed meteorology provided by the
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Table 1. Annual and Seasonal Mean Statistics Associated With the Linear Regression of CO Mole Fraction Data at NOAA
Sites ALT (1992–2012), BRW (1989–2012), and ZEP (1994–2012)

Observations GEOS-Chem

Site r2 p Value Slope (ppb/yr) r2 p Value Slope (ppb/yr)

Annual avg. ALT 0.47 0.0008 −1.0 ± 0.5 0.50 0.0005 −1.2 ± 0.6

BRW 0.71 <0.0001 −1.2 ± 0.3 0.49 0.0001 −1.1 ± 0.5

ZEP 0.44 0.003 −1.0 ± 0.6 0.47 0.002 −1.3 ± 0.7

MAM ALT 0.71 <0.0001 −1.5 ± 0.4 0.75 <0.0001 −1.7 ± 0.5

BRW 0.86 <0.0001 −1.9 ± 0.3 0.83 <0.0001 −1.9 ± 0.4

ZEP 0.60 0.0001 −1.3 ± 0.5 0.68 <0.0001 −1.7 ± 0.6

JJA ALT 0.10 0.2 −0.3 ± 0.4 0.04 0.4 0.3 ± 0.7

BRW 0.34 0.002 −0.5 ± 0.3 0.21 0.02 0.8 ± 0.7

ZEP 0.13 0.1 −0.4 ± 0.6 0.00 0.87 −0.1 ± 0.8

SON ALT 0.08 0.21 −0.7 ± 1.1 0.13 0.12 −0.8 ± 1.0

BRW 0.23 0.02 −0.9 ± 0.7 0.09 0.15 −0.7 ± 0.9

ZEP 0.14 0.1 −0.9 ± 1.2 0.15 0.11 −1.0 ± 1.2

DJF ALT 0.75 <0.0001 −1.7 ± 0.5 0.77 <0.0001 −2.3 ± 0.6

BRW 0.80 <0.0001 −1.9 ± 0.4 0.86 <0.0001 −2.7 ± 0.5

ZEP 0.73 <0.0001 −1.8 ± 0.6 0.68 <0.0001 −2.4 ± 0.9

Global Modeling and Assimilation Office at NASA Goddard [Rienecker et al., 2011]. We use the meteorologi-
cal data at a spatial resolution of 2∘ latitude by 2.5∘ longitude, with 47 vertical levels and run the model from
January 1980 to March 2015, including a 9 month spin up to minimize the effect of initial conditions.

We use the tagged CO version of the model [Bey et al., 2001; Duncan et al., 2007; Jones et al., 2003; Palmer
et al., 2003, 2006; Fisher et al., 2010; Finch et al., 2014], which uses precalculated 3-D OH fields, allowing us
to linearly decompose the CO contributions from individual sources and particular geographical regions. For
this experiment, we tag regions for fossil fuel and biofuel that immediately affect our measurement sites:
North America (24–88∘N, 18–100∘W), Europe (35–88∘N, 18∘W–30∘E), and East Asia (8–50∘N, 70–155∘E).
The remaining globe is combined as the “rest of world” (ROW). For all purposes the ROW in the Northern
Hemisphere represents Russia because the atmospheric lifetime of CO is much less than the typical interhemi-
spheric transport time. We also include a tracer that describes the indirect CO source from the oxidation of
methane and nonmethane volatile organic compounds [Duncan et al., 2007].

We use the EDGAR global fossil fuel emission inventory developed by Olivier et al. [1999] except for East Asia,
which we overwrite with country-specific values from Zhang et al. [2009] which have a seasonal variability
applied to them. We use scaling factors 1985–2010 from both emission data sets [van Donkelaar et al., 2008].
Emissions for pre-1985 and post-2010 years are adjusted using the 1985 and 2010 scaling factors, respectively.
We use monthly biomass burning emission estimates 1997–2011 from Giglio et al. [2010]; estimates outside of
these years are taken from the nearest year available. We use climatological biofuel emissions from Yevich and
Logan [2003], and biogenic emissions that depend on meteorological drivers Guenther et al. [2006]. We sample
the model at the time and location of the measurements and analyze them as we do the measurements.

3. Results

Figure 2 shows clearly that there is a downward trend in CO mole fraction at BRW and that the amplitude of
the seasonal cycle is decreasing. The largest spectral power is associated with the seasonal cycle, as expected,
though over a range of periods from 6 to 18 months. Table 1 shows the mean annual and seasonal statistics
associated with the weekly CO mole fraction data. We find a significant negative annual trend in CO at BRW,
ALT, and ZEP of 1.2 ± 0.3, 1.0 ± 0.5, and 1.0 ± 0.6 ppb/yr, respectively, over the past two decades. The two
anomalies to this secular trend in 1998 and 2003 coincide with the El Niño phase of the El Niño-Southern
Oscillation. The associated seasonal statistics at BRW, ALT, and ZEP are very different for different seasons,
with the largest and the most statistically significant trends during MAM and DJF. Figure 1 shows the weekly
averages from the model in comparison to the observations. The model reproduces the observations well
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Table 2. Mean Statistics Associated With the Detrended Seasonal Cycle of CO Mole Fraction Data at NOAA Sites ALT
(1992–2012), BRW (1989–2012), and ZEP (1994–2012)

Observations GEOS-Chem

Site r2 p Value Slope (ppb/yr) r2 p Value Slope (ppb/yr)

Amp. ALT 0.81 <0.0001 −1.9 ± 0.5 0.69 <0.0001 −3.4 ± 1.2

BRW 0.86 <0.0001 −2.3 ± 0.4 0.78 <0.0001 −4.5 ± 1.1

ZEP 0.54 0.004 −1.2 ± 0.7 0.61 0.0001 −2.9 ± 1.2

Max. ALT 0.82 <0.0001 −2.0 ± 0.5 0.82 <0.0001 −2.8 ± 0.7

BRW 0.88 <0.0001 −2.4 ± 0.4 0.86 <0.0001 −3.2 ± 0.5

ZEP 0.70 <0.00001 −1.5 ± 0.5 0.73 <0.0001 −2.7 ± 0.9

Min. ALT 0.01 0.6 −0.2 ± 0.7 0.04 0.4 0.4 ± 1.0

BRW 0.08 0.3 −0.3 ± 0.4 0.09 0.1 1.0 ± 1.3

ZEP 0.07 0.3 −0.5 ± 1.0 0.00 0.8 0.1 ± 1.0

Figure 3. GEOS-Chem model trends in the amplitude, maximum, and minimum of contributions from regional fossil fuel
sources to CO mole fractions at BRW from 1989 to 2012. Table 3 shows the associated numerical values.
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Table 3. Statistics Associated With the Detrended Seasonal Cycle of CO Mole Fraction
From Fossil Fuel Emissions From GEOS-Chem at NOAA Sites ALT (1992–2012), BRW
(1989–2012), and ZEP (1994–2012)

Site Origin r2 p Value Slope (ppb/yr)

Amp. ALT NA 0.82 <0.0001 −0.4 ± 0.1

EU 0.86 <0.0001 −0.8 ± 0.2

EA 0.13 0.1 0.1 ± 0.2

ROW 0.17 0.07 −0.1 ± 0.2

BRW NA 0.86 <0.0001 −0.6 ± 0.1

EU 0.79 <0.0001 −0.9 ± 0.2

EA 0.29 0.006 0.2 ± 0.2

ROW 0.44 0.0004 −0.8 ± 0.4

ZEP NA 0.71 <0.0001 −0.3 ± 0.1

EU 0.57 0.0003 −0.8 ± 0.4

EA 0.00 0.8 0.0 ± 0.2

ROW 0.02 0.6 0.1 ± 0.2

Max. ALT NA 0.89 <0.0001 −0.5 ± 0.1

EU 0.80 <0.0001 −1.0 ± 0.2

EA 0.14 0.1 0.4 ± 0.2

ROW 0.12 0.1 −0.1 ± 0.2

BRW NA 0.89 <0.0001 −0.7 ± 0.1

EU 0.80 <0.0001 −1.0 ± 0.2

EA 0.41 0.0007 0.4 ± 0.2

ROW 0.44 0.0004 −0.7 ± 0.4

ZEP NA 0.84 <0.0001 −0.5 ± 0.1

EU 0.66 <0.0001 −1.1 ± 0.4

EA 0.03 0.5 0.1 ± 0.2

ROW 0.01 0.7 0.0 ± 0.3

Min. ALT NA 0.70 <0.0001 −0.2 ± 0.0

EU 0.77 <0.0001 −0.2 ± 0.1

EA 0.10 0.2 0.0 ± 0.1

ROW 0.05 0.5 0.0 ± 0.0

BRW NA 0.73 <0.0001 −0.2 ± 0.0

EU 0.76 <0.0001 −0.2 ± 0.0

EA 0.39 0.001 0.1 ± 0.1

ROW 0.21 0.03 −0.0 ± 0.0

ZEP NA 0.69 <0.0001 −0.2 ± 0.1

EU 0.65 <0.0001 −0.3 ± 0.1

EA 0.11 0.2 0.1 ± 0.1

ROW 0.02 0.6 0.0 ± 0.1

with a squared Pearson correlation coefficient (r2) of 0.77, 0.66, and 0.70 for ALT, BRW, and ZEP, respectively.
The model also reproduces the longer-term variations (periods of 18 months and over) in the observations
well, with r2 = 0.85 , 0.80, and 0.81 for the three sites, respectively. We find that the measured and model
CO mole fraction show statistically significant negative trends in observed seasonal mean concentrations of
CO at all sites during DJF and MAM, but not during JJA and SON (Table 1). Trends determined by the model
are generally larger than observed values by typically 0.2–0.3 ppb/yr in summer, spring, and fall but reaching
0.8 ppb/yr during DJF.

Table 2 shows the trend analysis statistics of the maxima and minima after high-frequency variations
(periods of 6 months or less) have been removed, and the amplitude of the isolated seasonal cycle (periods
6–18 months), both done with the wavelet analysis. Table 2 shows that these trends result from a large,
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significant decrease in the seasonal cycle maximum, with no significant change to the depth of the sum-
mer minima. The model overestimates by a factor of 2 the observed negative trend in the amplitude of the
detrended seasonal cycle, although values are generally consistent within the associated uncertainty bounds.
The model also overestimates the observed trends in the maxima and minima but to a lesser extent.

Figure 1 shows using the GEOS-Chem global 3-D atmospheric chemistry and transport model that mod-
eled changes in Arctic CO mole fraction are consistent with a reduction in the emissions from fossil fuel
combustion. Biomass burning has a seasonal contribution, peaking in the spring and summer months,
with anomalously large values associated with El Niño. The CO source from the oxidation of methane and
nonmethane volatile organic compounds is small compared to fossil fuel combustion for the majority of the
annual cycle, but its proportional contribution is increasingly becoming more important as the combustion
source decreases.

Figure 3 (for BRW) and Table 3 (for all sites) show that the trends in the amplitude and maxima of the mod-
eled CO mole fractions are driven by a steady decline in the modeled fossil emissions transported from North
America and Europe. At these sites, the contribution from East Asia increases, resulting in a small compensat-
ing effect on the total CO. The trends in the minima for North America and Europe are small and negative,
while for East Asia the trend is small and positive but not statistically significant.

We calculate regional trends in annual emissions from 1989 to 2012 used in GEOS-Chem by region, which
show statistically significant negative trends for CO in North America and Europe of −2.4 ± 0.3 Tg yr−1

and −2.3 ± 0.2 Tg yr−1 respectively, and a positive trend of 2.9 ± 1.1 Tg yr−1 from East Asia. In a separate
study, the TM5 model was used to analyze atmospheric CH4 mole fraction at these Arctic sites (L. Bruhwiler,
personal communication, 2016). Using a series of model calculations, the study showed that atmospheric
transport introduced year-to-year variations in atmospheric CH4 but no trend. This suggests that observed CO
mole fraction trends in the Arctic can be largely attributed to changes in emissions rather than atmospheric
transport.

Our work builds on a previous study that showed that atmospheric CO decreased in the high northern
hemisphere (30–90∘) over 1988–1997 due to reduced European emissions [Duncan and Logan, 2008], with
compensatory increasing Asian emissions having less of an impact at the higher northern latitude sites due
to predominately westward transport pathways. Our study has analyzed the data over a longer duration,
allowing us to use more advanced statistical machinery with confidence.

4. Concluding Remarks

In a changing Arctic environment, driven by coupled anthropogenic and natural processes, it may be possi-
ble to detect subtle variations in frequency and time using a more broadly defined seasonal cycle rather than
changes in annual or seasonal means as commonly studied. As such, spectral decomposition of data offers
a much richer approach for detecting changes in atmospheric chemistry, by allowing for nonstationary pro-
cesses. Here we focused our analysis on CO mainly because of the availability of long measurement records
over the Arctic, but to a limited extent we expect to be able to relate our findings to other trace gases and
particulate matter that share common midlatitude sources [Quinn et al., 2007], which determine the observed
variations in the maximum of the seasonal cycle. However, during summer months, variations in the seasonal
minimum of CO and particulate matter are due to different physical and chemical processes.
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